
Techniques	for	Enabling	Highly	Efficient	Message	
Passing	on	Many-Core	Architectures		

Min Si
PhD student at University of Tokyo, Tokyo, Japan
Advisor : Prof. Yutaka Ishikawa, Prof. Reiji Suda

Guest graduate student at Argonne National Laboratory, IL, USA
Supervisor : Dr. Pavan Balaji

Email:											msi@il.is.s.u-tokyo.ac.jp	
Homepage:		h8p://sudalab.is.s.u-tokyo.ac.jp/~msi/	

Background	

§  Complexity	in	scien@fic	applica@ons	

§  Trends	of	hardware	change	
§  Popular	programming	models	and	exis@ng	challenges	

Min	Si,	Postdoc	Interview,	2015-10-26	
2	

ApplicaJon	
Complexity	

Hardware	Complexity	

Terascale	
Petascale	

Exascale	

100Petascale	

10Petascale	

NWChem	in	Chemistry		

§  Current	applicaJons	have	been	looking	at	small-to-medium	molecules	
consisJng	of	20-100	atoms	
–  Amount	of	computa@on	per	data	element	is	reasonably	large,	so	scien@sts	

have	been	reasonably	successful	decoupling	computa@on	and	data	movement	

§  For	Exascale	systems,	scienJsts	want	to	study	molecules	of	the	order	of	
a	1000	atoms	or	larger	
–  Coulomb	interac@ons	between	the	atoms	is	much	stronger	in	the	problems	

today	than	what	we	expect	for	Exascale-level	problems	
–  Larger	problems	will	need	to	support	both	short-range	and	long-range	

components	of	the	coulomb	interac@ons	(possibly	using	different	solvers)	

3	

interac(ons	among	~21	
water	molecules	

interac(ons	among	
~1000	water	
molecules	

distance	

interac@on	strength	
long-range	

short-range	

*=

Courtesy	Pavan	Balaji	(Argonne)	

Irregular	Sparse	ComputaJon	in	NWChem	

§  Diversity	in	the	amount	of	computa@on	per	data	element	is	
going	to	increase	substan@ally	

§  Regularity	of	data	and/or	computa@on	would	be	substan@ally	
different	

4	

*	=	

0		

5		

10		

15		

20		

1704	 3072	 6144	 12288	

Ti
m
e	
(h
)

Number	of	Cores

RMA	 DGEMM	
More	than	50%	1me	idling	in	CCSD(T)	for	W21	

Task	load	balancing	?	
CommunicaJon	complexity	?		

Current	computa1on	paBern	

Genome	Analysis	in	BioinformaJcs		

§  Sequence	alignment	

§  Sequence	assembly	

–  Reconstruct	long	DNA	
sequences	by	merging	
many	small	fragments	

§  Gene	mapping	

Min	Si,	Postdoc	Interview,	2015-10-26	
5	

Sequencing	

AGT	

AGTTCCCTGGAACCGTGAC…	

CCT	

DNA	Samples	 Reads	

Break	into		
small	“reads”	

AGTTCCCTGGAACCGTGA	

AGT	

TTC	

GTT	 TCC	

CCG	
GAG	AGTTC	

GGAAC	

CTGGA	

Search	&	merge	
overlapping	reads	

Output	long	con1gs	

Represent	reads	as		
De	Bruijn	graph	

AGTTCCCTGGAACCGTGA	

Assembly	

Remove	erroneous	links	

Larger	raw	data	&	overlapping	reads	
•  Human	Genome:	2TB	~	3TB	DNA	reads	
•  Metagenome:	PB	~	EB+	level	DNA	reads	

Hard	to	read	whole	genomes	in	current		sequencing	technology.		
Instead,	read	many	small	fragments	,	called	“reads”.	

[Adapted	from	Na@onal	Human	Genome	
Research	Ins@tute]	

Massive	Data	Movement	in	Kiki	Genome	Assembly		

Basic	edge	merging	algorithm	

	

	

	

	

Hard	to	balance	task	load	
•  106+	outstanding	msgs	/	rank	
•  2.3TB	sample	was	assembled	on	

18,000	cores	for	4	days,	90%+	of	@me	
idling	

remote	search	local	node	

remote	nodes	
ACGCGATTCAG	
					GCGATTCAGTA	

DNA	consensus	sequence	

1.   Send	local	DNA	unit	to	that	node;		
2.   Search	matching	unit	on	that	node;		
3.   Merge	two	units	on	that	node;	
4.   Return	merged	unit.	

ACGCGATTCAG	

ACGCGATTCAGTA	

(64Bytes	~	1MBytes	for	single	message)	

Step	1	

Step	2,	3	

Step	4	

process	(server	1)	

process	(server	2)	

process	(server	3)	

DNA	units	1:	
ACGCGATTCAG	

DNA	units	3:	
ATGAGGCATAC	

DNA	units	2:	
GCATAGTATCG	

memory	

process	(sender)	

DNA	reads	

DNA	reads	

DNA	reads	

merging	results	

merging	results	

merging	results	

Large	amount	of	outstanding	data	movement	

ParJcle	Tracing	and	Graph	in	Parallel	VisualizaJon	

§  Par@cle	tracing	
–  e.g.,	For	Rayleigh–Taylor	instability	

•  Interface	between	a	heavy	fluid	
overlying	a	light	fluid	

	

§  Irregular	graph	visualiza@on	
–  Completely	data-driven	

–  Possible	op@miza@on	is	unclear	but	
is	interes@ng	to	inves@gate	!	

Min	Si,	Postdoc	Interview,	2015-10-26	
7	

Semi-regular	CommunicaJon	in	ParJcle	tracing	:	
Exchange	parJcles	in	4D	Jme-space	neighborhoods	

Irregular	Task	load	

Mushroom	cloud:	
RTI	at	the	interface	between	
hot	less-dense	and	cold	
more-dense	air	

Courtesy	Tom	Peterka	(Argonne)	

GFMC	in	Nuclear	Physics		

§  Green’s	Func@on	Monte	Carlo	
–  The	“gold	standard”	for	ab	ini(o	

calcula@ons	in	nuclear	physics	at	
Argonne	(Steve	Pieper,	PHY)	

§  Irregular	pa8ern	for	load	balancing	
–  A	non-trivial	master/slave	algorithm,	

with	assorted	work	types	and	priori@es	

–  mul@ple	processes	create	work	
dynamically	

–  large	work	units	

Min	Si,	Postdoc	Interview,	2015-10-26	
8	

Applica@on	Processes	
ADLB	Servers	

ADLB	put/get	

Courtesy	Rusty	Lusk	(Argonne)	

Complexity	in	Hardware	Design	

Min	Si,	Postdoc	Interview,	2015-10-26	
9	

Terascale	

Petascale	

Exascale	

1996	ASCI	Red	

2008	IBM	Roadrunner	

10Petasale	
100Petasale	

2012	MIRA	

2016	Cori	

2017-2018	Summit	

2018-2019	Aurora	

Hit	the	power	wall,	
mul@-core	started	

Complexity	of	processors	and	memory	design	
•  Heterogeneous	(i.e.,	CPU+GPU/Manycore)	
•  Fat	node	performance	(many	threads/cores)	
•  On-package	memory	
•  I/O	Burst	buffer	
•  …	

Increasing	power	per	
processor		

Many-core	Architectures	

§  Massively	parallel	environment	

§  Intel®	Xeon	Phi	co-processor	

–  60	cores	inside	a	single	chip,	240	hardware	threads	
–  SELF-HOSTING		in		next	genera@on	

§  Blue	Gene/Q	

Min	Si,	Postdoc	Interview,	2015-10-26	
10	

[Adapted	from	Intel]	

[Adapted	from	Wikipedia]	

Hardware	CharacterisJcs	
•  Large	amount	of	simple	and	low	frequency	cores	
•  Other	on-chip	resources	are	growing	at	a	lower	rate…	

Node	resources	 Mira	 Aurora	

#Cores/
#Threads	

	16/64	 60+/240+	

Memory	 16GB	 32GB	(High	
Bandwidth	Memory)	

4X	

2X	

ScienJfic	Programming	models	(1)	

Hybrid	MPI+Threads	model	
§  To	fully	u@lize	the	hardware	

resources	
§  Massive	parallelism	in	

computaJon	

§  On-chip	resource	sharing		

§  To	handle	complex	&	irregular	
computa@on	
§  Dynamic	&	fine-grained	task	

scheduling	

Min	Si,	Postdoc	Interview,	2015-10-26	
11	

MPI	Process		

OpenMP	Threads	

•  Large	amount	of	low	frequency	cores	
•  Limited	other	on-chip	resources	(e.g.,	

memory)	

MPI	Process		

OpenMP	Threads	

MPI	Process		

OpenMP	Threads	

MPI	Process		

OpenMP	Threads	

Inter-connecJon	

Hybrid	MPI	+	threads	modes	

Min	Si,	Postdoc	Interview,	2015-10-26	
12	

TradiJonal	Thread	Single	mode	

/* user computation */

MPI_Function ();

/* user computation */

MPI	Process	

COMP.	

COMP.	

MPI	COMM.	

#pragma omp parallel
{ /* user computation */ }

MPI_Function ();

#pragma omp parallel
{ /* user computation */ }

#pragma omp parallel
{
 /* user computation */

 MPI_Function ();

 /* user computation */
}

MPI	Process	

COMP.	

COMP.	

MPI	COMM.	

MulJthreading	mode	

Funneled	/	Serialized	mode	(most	widely	used)	

•  Mul@threaded	user	computa@on	
•  S@ll	single	thread	issues	MPI	calls	

Problem	Statement	

§  Mul@ple	threads	are	created	for	user	computa@on	

§  But	only	single	thread	issues	MPI	

Min	Si,	Postdoc	Interview,	2015-10-26	
13	

MPI	Process	

COMP.	

COMP.	

MPI	COMM.	

#pragma omp parallel
{ /* user computation */ }

MPI_Function ();

#pragma omp parallel
{ /* user computation */ }

•  Large	amount	of	IDLE	threads	
•  Single	lightweight	core	delivers	poor	

performance	

ScienJfic	Programming	models	(2)	

One-sided	programming	
§  PGAS-like	applica@ons	(e.g.,	Global	Arrays	

for	NWChem)	

§  CESAR	project	(Next	genera@on	Nuclear	
Reactor	Modeling)	

§  For	be8er	resource	sharing	

§  Memory	sharing	across	nodes	on	
distributed	memory	systems	

§  To	handle	complex	&	irregular	
computa@on	

§  Dynamic,	data-driven	communicaJon	

	
Min	Si,	Postdoc	Interview,	2015-10-26	

14	

Global	Address	Space	

Physically	distribuJon	

Accumulat
e	block	c	

GET	
block	b	

GET	
block	a	

Perform	DGEMM	in	local	buffer		

Problem	Statement	

§  MPI	one-sided	opera@ons	are	not	truly	one-sided	!	
–  Some	opera@ons	can	be	supported	by	hardware	(e.g.,	PUT/GET	on	IB,	

Cray)	

–  Other	opera@ons	s@ll	have	to	be	handled	by	sohware	(e.g.,	3D	
accumulates	of	double	precision	data)	

Min	Si,	Postdoc	Interview,	2015-10-26	
15	

Not	TRULY	asynchronous	!	

Sozware	implementa@on	of	one-sided	
opera@ons	means	that	the	target	process	
has	to	make	an	MPI	call	to	make	progress.		

Process	0	 Process	1	

+=	
ComputaJon	

Acc(data)	

MPI	call	
Delay	

Non-conJguous	Accumulate	in	MPI	

Research	ContribuJon	

§  Enable	highly	efficient	message	passing	on	many-core	
architectures	for	various	kinds	of	scien@fic	applica@ons		

Min	Si,	Postdoc	Interview,	2015-10-26	
16	

Process 0 Process 1

+=
Computation Acc(data)

Ghost
Process

MPI Recv	

MPI	Process	

COMP.	

COMP.	

MPI	COMM.	 MPI	COMM.	

II.   Process-based	Asynchronous	Progress	
for	MPI	one-sided	programming	
•  Flexible	&	Portable	&	Low	

overhead	
•  Improve	SW-handled	RMA	

opera@ons	without	affec@ng	HW-
handled	RMA.	

I.   MulJthreaded	MPI	for	hybrid	MPI+	
threads	model		
•  Sharing	Idle	Threads	with	

applica@on	inside	MPI	
•  Op@mizing	MPI	internal	processing	

by	massive	parallelism	

MT-MPI	
MulJthreaded	MPI	for	Many-Core	Environments		

Published Paper

1.  “MT-MPI: Multithreaded MPI for Many-core Environments.” M. Si, A. Pena, P. Balaji,
M. Takagi, and Y. Ishikawa. ICS 2014.

	

Core	Concept	of	MulJthreaded	MPI	

§  Sharing	Idle	Threads	with	Applica@on	inside	MPI	

§  Parallelizing	MPI	internal	processing	

Min	Si,	Postdoc	Interview,	2015-10-26	
18	

MPI	Process	

COMP.	

COMP.	

MPI	COMM.	

MPI	COMM.	

#pragma omp parallel
{ /* user computation */ }

MPI_Function (){

 /* MPI internal task */

}

#pragma omp parallel
{ /* user computation */ }

 #pragma omp parallel
{

/* MPI internal task */
}

Challenges	(1/2)	

§  Some	parallel	algorithms	are	not	efficient	with	insufficient	
threads,	need	tradeoff	

Min	Si,	Postdoc	Interview,	2015-10-26	
19	

SINGLE	SECTION	

#pragma omp parallel
{

/* user computation */

#pragma omp single
{

/* MPI_Calls */
}

} Barrier	

Number	of	available	threads	is	
UNKNOWN	!	

Challenges	(2/2)	

§  Nested	parallelism	
–  Simply	creates	new	Pthreads,	and	offloads	thread	scheduling	to	OS	

Min	Si,	Postdoc	Interview,	2015-10-26	
20	

#pragma omp parallel
{

#pragma omp single
{

#pragma omp parallel
{ … }

}
}

Creates	N	Pthreads	!	

Creates	N	Pthreads	!	

Threads	OversubscripJon	

Should	ONLY	use	IDLE	threads.	
However,	it	is	UNKNOWN	!	

Design	Overview	

§  ModificaJon	in	OpenMP	runJme	

–  Expose	number	of	IDLE	threads	

–  Guaranteed	Idle	Threads	

–  Temporarily	Idle	Threads	

§  ModificaJon	in	MPI	

–  Parallelize	internal	tasks	
–  Use	num_idle_threads	for	tradeoff	between	sequen@al	and	parallelism	

algorithms	

–  Use	num_idle_threads	for	specifying	num_threads	in	nested	parallel	
region	to	avoid	threads	overrunning	issue	

Min	Si,	Postdoc	Interview,	2015-10-26	
21	

#pragma omp parallel
{
 #pragma omp single
 {

 }
}

Barrier	

Example	of		
Guaranteed	Idle	Threads	

MPI	Internal	Parallelism	

Min	Si,	Postdoc	Interview,	2015-10-26	
22	

0	 5	 10	 15	 20	

Shared	Buffer	

Cell[0]	
Cell[1]	
Cell[2]	
Cell[3]	

User	
Buffer	

User	
Buffer	

Sender	 Receiver	

P0	 P1	

QP	QP	CQ	PD	

HCA

IB	CTX	

DDT	packing/unpacking	

Shared	memory	communicaJon	

InfiniBand	communicaJon	

EvaluaJon	on	Stampede	

Min	Si,	Postdoc	Interview,	2015-10-26	
23	

1.
0	
	

1.
0	
	

1.
3	
	 2.
0	
	 2.
8	
	

3.
8	
	 4.
5	
	

4.
7	
	

3.
1	
	

1.
0	
	

1.
0	
	

1.
1	
	

1.
3	
	

1.
5	
	

1.
8	
	

2.
2	
	

2.
3	
	

2.
2	
	

0	

1	

2	

3	

4	

5	

1	 2	 4	 8	 16	 32	 64	 128	 240	

Sp
ee
du

p	

Number	of	Threads	

Communica@on	
Time	Speedup	
Execu@on	Time	
Speedup	

0.1		
0.3		

0.5		
1.0		

1.9		
3.3		4.3		

5.2		

0.125	
0.25	
0.5	
1	
2	
4	
8	
16	

1	 2	 4	 8	 16	 32	 64	 120	

Sp
ee
du

p	
	

Number	of	Threads	

64	KB	

256	KB	

1	MB	

4	MB	

16	MB	

1.0		

1.1		 1.1		
1.2		

1.3		 1.3		 1.3		

1.0		

1.1		

1.2		

1.3		

1.4		

1.0E+06	
1.1E+06	
1.2E+06	
1.3E+06	
1.4E+06	
1.5E+06	
1.6E+06	
1.7E+06	

1	 2	 4	 8	 16	 32	 64	

Im
pr
ov
em

en
t	

Ha
rm

on
ic
	M

ea
n	
TE
PS
	

Number	of	Threads	

Improvement	 Harmonic	Mean	TEPS	

Hybrid	MPI+OpenMP	NAS	MG	(Class	E,	64	processes)	
using	parallelized	DDT	packing/unpacking	

OSU	P2P	BW		
using	parallelized	shared	memory	communicaJon	

One-sided	Graph500	(Scale	222,	64	processes)	
using	parallelized	InfiniBand	communicaJon	

CASPER	
Process-based	Asynchronous	Progress	Model		
for	MPI	RMA	

Papers

1.  “Casper: An Asynchronous Progress Model for MPI RMA on Many-Core Architectures.” M.
Si, A, Pena, J. Hammond, P. Balaji, M. Takagi, and Y. Ishikawa. IPDPS 2015.

2.  “Scaling NWChem with Efficient and Portable Asynchronous Communication in MPI RMA.”
M. Si, A. J Peña, J. Hammond, P. Balaji, and Y. Ishikawa. CCGrid 2015.

3.  “A Dynamic Adaptable Process-based Asynchronous Progress“ Journal under preparation.

Invited Talk

1.  “Casper: An Asynchronous Progress Model for MPI RMA on Many-core Architectures.” M. Si.
In The 2ed Workshop of INRIA-ILLINOIS-ANL-BSC Joint Laboratory on Extreme Scale
Computing, Chicago, USA, 2014

	

Message	Passing	Models	

§  Regular	two-sided	communicaJon	
	

	

	

§  Irregular	one-sided	communicaJon	
(Remote	Memory	Access)	

Min	Si,	Postdoc	Interview,	2015-10-26	
25	

Process	0	 Process	1	

+=	

Put	(data)	
Get	(data)	
Acc	(data)	

Process	0	 Process	1	

Send	(data)	 Receive	(data)	

Receive	(data)	 Send	(data)	
ComputaJon	

Process	0	 Process	1	

+=	
ComputaJon	

Acc(data)	

Delay		Not	TRULY	asynchronous	!	

Non-con1guous	Accumulate	in	MPI	

TradiJonal	Approaches	of	Asynchronous	Progress	

§  Thread-based	approach	
–  Every	process	has	a	

communicaJon	dedicated	
background	thread	

–  Background	thread	polls	progress	

§  Interrupt-based	approach	
–  Assume	all	hardware	resources	

are	busy	with	user	computa@on	
on	target	processes	

–  U@lize	hardware	interrupts	to	
awaken	a	kernel	thread	

Min	Si,	Postdoc	Interview,	2015-10-26	
26	

Cons:	
×  Waste	50%	compuJng	cores	or	

oversubscribe	cores	
×  Overhead	of	mulJthreading	safety		

Cons:	
×  Overhead	of	frequent	interrupts	

DMMAP-based	ASYNC	overhead	on	Cray	XC30	

Process	0	 Process	1	

+=	 ComputaJon	

Helper		
thread	

0		
10000		
20000		
30000		
40000		
50000		
60000		
70000		
80000		
90000		
100000		

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

10	

1	 4	 16	 64	 256	 1024	

In
te
rr
up

ts

Ex
ec
uJ

on
	T
im

e	
on

	R
an

k	
0(
m
s)

Number	of	OperaJons

System	Interrupts	
Original	MPI	
DMMAP-based	async	

Casper		Process-based	ASYNC	Progress	

§  MulJ-	and	many-core	architectures	
–  “Infinite	cores”	
–  Not	all	of	the	cores	are	always	keeping	busy	

§  Process-based	asynchronous	progress	
–  Dedica@ng	arbitrary	number	of	cores	to	“ghost	processes”	

–  Ghost	process	intercepts	all	RMA	operaJons	to	the	user	processes

Min	Si,	Postdoc	Interview,	2015-10-26	
27	

…	

Compu1ng	cores	

ASYNC	cores	

Original	communica1on	

Process	0	 Process	1	

ComputaJon	RMA(data)	

MPI	call	

Process	0	 Process	1	

+=	ComputaJon	Acc(data)	

Ghost	
Process	

Communica1on	with	Casper	

Pros:	
ü  No	overhead	caused	by	mulJthreading	safety	or	frequent	interrupts	
ü  Flexible	core	deployment	
ü  Portable	PMPI*	redirecJon	

Basic	Design	of	Casper	

§  Three	primary	funcJonaliJes	
1.  Transparently	replace	MPI_COMM_WORLD	

by	COMM_USER_WORLD		

	

2.   Shared	memory	mapping	between	local	user	
and	ghost	processes	by	using	MPI-3	
MPI_Win_allocate_shared*.	

Min	Si,	Postdoc	Interview,	2015-10-26	
28	

Ghost	
Process	

P1	 P2	
P1	offset	

P2	offset	

Internal	Memory	mapping	

G	 G	

					0									1									2																					3										4	

COMM_USER_WORLD	
					0									1																																2	

MPI_COMM_WORLD	

3.   Redirect	RMA	operaJons	to		ghost	processes	

P0	 P1	

+=	

ACC(P1,	disp,	user_win)	

Ghost	Process	
for	P1	

						ACC(G0,	P1_offset	+	disp,		
						internal_win)	

ComputaJon	

Lock(P1)	

Lock(G0)	 lock	
Recv	

*	MPI_WIN_ALLOCATE_SHARED	:	Allocates	window	that	is	shared	among	all	processes	in	
the	window’s	group,	usually	specified	with	MPI_COMM_TYPE_SHARED	communicator.	

Challenges		

§  Ensuring		Correctness	and	Performance	
–  Lock	Permission	Management		

–  Self	Lock	Consistency	
–  Managing	Mul@ple	Ghost	Processes	

–  Mul@ple	Simultaneous	Epochs	

Min	Si,	Postdoc	Interview,	2015-10-26	
29	

ü  Asynchronous	progress	
ü  Transparent	&	Portable	
ü  Correctness	
ü  Performance	

Casper	

MPICH	

ApplicaJons	
CrayMPI	

Intel	MPI	

…	

MVAPICH	

EvaluaJon	on	Cray	XC30	(1)	

Min	Si,	Postdoc	Interview,	2015-10-26	
30	

PUT	on	Cray	XC30	(HW	in	DMAPP	mode)	

10.74		

17.04		

7.07		

6.37		

0	

3	

6	

9	

12	

15	

18	

2	 4	 8	 16	 32	 64	 128	 256	
Av

er
ag
e	
Ti
m
e	
(m

s)
		

Number	of	ApplicaJon	Processes	(ppn=1)	

Original	MPI	

Thread-based	async	

DMAPP-based	async	

Casper	

DMAPP	(HW	PUT)	

Accumulate	on	Cray	XC30	(SW)	

8.87		

17.22		

53.16		

5.09		0	

10	

20	

30	

40	

50	

60	

2	 4	 8	 16	 32	 64	 128	 256	

Av
er
ag
e	
Ti
m
e	
(m

s)
	

Number	of	ApplicaJon	Processes	(ppn=1)

Original	MPI	

Thread-based	async	

DMAPP-based	async	

Casper	

DMAPP	(Interrupt-based	async)	

No	impact	on	HW-handled	operaJons.	Casper	provides	asynchronous	progress	for	
SW-handled	operaJons.	

HW-handled	OP	 ASYNC.	mode	

Original	mode	 NONE	 Thread	

DMAPP	mode	 Con@g.	PUT/GET	 Interrupt	

RMA	implementaJon	in	Cray	MPI	v6.3.1	
Lock_all (win);
for (dst=0; dst<nproc; dst++) {

OP(dst, double, cnt = 1, win);
Flush(dst, win);
busy wait 100us; /*computing*/

}
Unlock_all (win)	

Test	scenario	

EvaluaJon	on	Cray	XC30	(2)	

§  NWChem	Quantum	Chemistry	ApplicaJon	

–  Computa@onal	chemistry	applica@on	suite	composed	of	many	types	of	
simula@on	capabili@es.	

–  ARMCI-MPI	(Portable	implementa@on	of	Global	Arrays	over	MPI	
RMA)	

Min	Si,	Postdoc	Interview,	2015-10-26	
31	

ARMCI		:	CommunicaJon	interface	for	RMA[2]	

Global	Arrays	[1]	

IB	 DMMAP	
…	

MPI	RMA	

ARMCI-MPI	

[1]	h8p://hpc.pnl.gov/globalarrays	
[2]	h8p://hpc.pnl.gov/armci	

Communica1on	Run1me	Construc1on	

Global	Address	Space	

Physically	distributed	to	different	processes		

[Hidden	from	user]	

NWChem	

EvaluaJon	on	Cray	XC30	(3)	

§  Typical	Get-Compute-Update	mode	in	GA	programming	

Min	Si,				CCGrid2015	-	Scale	Challenge	
32	

for i in I blocks:
 for j in J blocks:
 for k in K blocks:
 GET block a from A
 GET block b from B
 c += a * b /*computing*/
 end do
 ACC block c to C
 end do
end do	

Pseudo	code	

Accumulate	
block	c	

GET	
block	b	

GET	
block	a	

Perform	DGEMM	in	local	buffer		

EvaluaJon	on	Cray	XC30	(4)	

§  “Gold	standard”	CCSD(T)	

§  Water	molecular	(H2O)	21	

Min	Si,	Postdoc	Interview,	2015-10-26	
33	

NWChem	CCSD(T)	for	W21=(H2O)21	with	pVDZ		

(H2O)21	
14
.1
		

8.
3	
	

4.
1	
	

2.
2	
	

8.
2	
	

4.
6	
	

2.
3	
	

1.
2	
	

0	
3	
6	
9	
12	
15	
18	

1704	 3072	 6144	 12288	

Ti
m
e	
(h
)

Number	of	Cores

Original	MPI	 Casper	
Thread(O)	 Thread(D)	

Reduced	!	

#	COMP.	 #	ASYNC.	

Original	MPI	 24	 0	

Casper	 20	 4	

Thread-ASYNC	
(oversubscribed)	 24	 24	

Thread-ASYNC	
(dedicated)	 12	 12	

Core	deployment	(24	cores	per	node)		
	
	

CCSD(T)	
	

MP2	
	

SCF	

More	accuracy	
More	computa1on	

O(N7)	

O(N5)	

O(N3)	

We	are	here	

Summary	

§  Applica@ons	&	hardware	architectures	are	becoming	more	complex	

§  Parallelism	&	Resource	sharing	&	Dynamic	computa@on	are	important	!	

§  Two	most	popular	programming	models	used	in	modern	applica@ons		

Min	Si,	Postdoc	Interview,	2015-10-26	
34	

1.	Hybrid	MPI+Threads	model	 2.	One-sided	programing	

MPI	Process		

OpenMP	Threads	

Problem:	
•  Many	IDLE	threads	in	COMM.	
•  Single	lightweight	core	
performs	COMM.	

Problem:	
•  Lack	asynchronous	
progress	in	MPI	
RMA		

MulJthreaded	MPI	
•  Parallelizing	MPI	communica@on	by	

u@lizing	user	IDLE	threads		

Process-based	Asynchronous	Progress		
•  Provide	Portable	&	Efficient	&	Flexible	

asynchronous	progress	for	MPI	RMA	

SoluJons	

Future	Research	Plan:		BEEHIVE	

Min	Si,	Postdoc	Interview,	2015-10-26	
35	

Power	Efficiency	
•  Computa@on	and	data	

consolida@on	

Fault	Resilience	
•  Lightweight	checkpoin@ng	
•  Dynamic	migra@on	

High	Performance		
•  Intelligent	latency	hiding	
•  Migra@on	for	be8er	load	balance	

CPU	
core	

CPU	
core	

CPU	
core	

CPU	
core	

Over-decomposi1on	

Decoupling	logical	
tasks	from	
physical	cores	

Beehive	dynamic	execuJon	runJme	

Under	invesJgaJon:	OpJmizaJon	for	High	Performance

§  Intelligent	Latency	Hiding	
–  Context	switch	when	blocking	in	

communica@on	/	IO.	

–  Yield	to	a	“Ready-To-Go”	process	

	

	

§  Load	Balancing	
–  Migrate	processes	from	busy	

core	to	rela@vely	idle	core

DOE-MEXT	MeeJng		Sep.	11,	2015	
36	

Process	0	 Process	1	

Compute	

Compute	COMM/IO	

Yield	To	

Hide	latency	

CPU	
core	

Process	4	

Process	5	

Process	6	

Process	7	

CPU	
core	

Process	0	

Process	1	

Process	2	
Process	3	

CPU	
core	

Migrate	To	

Thank	you		

Min	Si,	Postdoc	Interview,	2015-10-26	
37	

ApplicaJon	
Complexity	

Hardware	Complexity	

Terascale	
Petascale	

Exascale	

100Petascale	

10Petascale	

Backup	Slides	

Selected	PublicaJons	
MPI	op@miza@on	for	many-core	architectures	(Ph.D.	research)	
1.  “Scaling	NWChem	with	Efficient	and	Portable	Asynchronous	Communica@on	in	MPI	RMA.”	

M.	Si,	A.	J	Peña,	J.	Hammond,	P.	Balaji,	and	Y.	Ishikawa.	CCGrid	2015.		
2.  “Casper:	An	Asynchronous	Progress	Model	for	MPI	RMA	on	Many-Core	Architectures.”		M.	Si,	

A,	Pena,	J.	Hammond,	P.	Balaji,	M.	Takagi,	and	Y.	Ishikawa.		IPDPS	2015.	
3.  “MT-MPI:	Mul@threaded	MPI	for	Many-core	Environments.”	M.	Si,	A,	Pena,	P.	Balaji,	M.	

Takagi,	and	Y.	Ishikawa.	ICS	2014.	
	
Low	level	communica@on	facility	for	many-core	architectures	(Master	research)	
5.  “Direct	MPI	Library	for	Intel	Xeon	Phi	Co-Processors.”	M.	Si,	M.	Takagi,	and	Y.	Ishikawa.		In	

Parallel	and	Distributed	Processing	Symposium	Workshops	PhD	Forum	(IPDPSW)	2013.	
6.  “Design	of	Direct	Communica@on	Facility	for	Many-Core	Based	Accelerators.”	M.	Si	and	Y.	

Ishikawa.	In	Parallel	and	Distributed	Processing	Symposium	Workshops	PhD	Forum	(IPDPSW)	
2012.	

Min	Si,	Postdoc	Interview,	2015-10-26	
39	

Guaranteed	Idle	Threads	VS	Temporarily	Idle	Threads	

§  Guaranteed	Idle	Threads	
–  Guaranteed	idle	un@l	Current	

thread	exits

§  Temporarily	Idle	Threads	
–  Current	thread	does	not	

know	when	it	may	become	
ac@ve	again

Min	Si,	Postdoc	Interview,	2015-10-26	
40	

#pragma omp parallel
{

#pragma omp single nowait
{…
}

#pragma omp critical
{…
}

}

#pragma omp parallel
{

#pragma omp single
{…
}

}
Barrier	

#pragma omp parallel
{

#pragma omp critical
{…
}

}

Example	1	

Example	2	

Example	3	

Expose	Guaranteed	Idle	Threads	

§  MPI	uses	Guaranteed	Idle	Threads	to	schedule	its	internal	
parallelism	efficiently		(i.e.	change	algorithm,	specify	number	
of	threads)	

Min	Si,	Postdoc	Interview,	2015-10-26	
41	

#pragma omp parallel
#pragma omp single
{
 MPI_Function {
 num_idle_threads = omp_get_num_guaranteed_idle_threads();
 if (num_idle_threads < N) {

 /* Sequential algorithm */
 } else {

 #pragma omp parallel num_threads(num_idle_threads)
 { … }

}
 }
}

SequenJal	Pipelining	VS	Parallelism	

§  Small	Data	transferring	(<	128K)	
–  Threads	synchroniza@on	overhead	>	parallel	improvement	

§  Large	Data	transferring	
–  Data	transferred	using	Sequen@al	Fine-Grained	Pipelining		

	

–  Data	transferred	using	Parallelism	with	only	a	few	of	threads	(worse)	

–  Data	transferred	using	Parallelism	with	many	threads	(be8er)	

Min	Si,	Postdoc	Interview,	2015-10-26	
42	

Sender	Buffer	
Shared	Buffer	

Receiver	Buffer	

NWChem	CCSD(T)	Profiling	

Min	Si,	Postdoc	Interview,	2015-10-26	
43	

Internal	steps	in	CCSD(T)	task	

0		
2		
4		
6		
8		
10		
12		
14		
16		

1704	 3072	 6144	 12288	

Ti
m
e	
(h
)

Number	of	Cores

RMA	 DGEMM	
(T)	Por1on	profiling	for	W21	with	Original	MPI	

8.0		 8.1		
15.5		 15.7		

6.6		

0	

5	

10	

15	

20	

Original	
MPI	

Casper	 Thread	(O)	Thread	(D)	

Tu
ne

	(h
)

RMA	 DGEMM	 Sort	

0%	

20%	

40%	

60%	

80%	

100%	

W5	 W16	 W21	

Ti
m
e

Problem	Sizes

4-index	 CCSD	 (T)	por@on	 Others	
CCSD(T)	internal	steps	in	varying	water	problems	

(T)	porJon	consistently	dominates	
the	enJre	cost	by	close	to	80%.	

Self-consistent	field	(SCF)	

Four-index	transformaJon	(4-
index)		

CCSD	iteraJon	

(T)	porJon	

Internal	steps	in	CCSD(T)	task	

